Appendix 3 Submitted Drainage Proposal to Planning Department on 27.6.2024 in compliance with Approval Condition (d) of last application (No. A/YL-KTS/946)





# **Catchment Area of the Existing Water Stream Course**

# Drainage Design For the application near Kam Ho Road (2<sup>nd</sup> Revised Calculations) 26-6-2024

#### **DSD - STORMWATER DRAINAGE MANUAL**

#### 7.5.2 Rational Method

## Qp = 0.278CiA

where  $Qp = peak runoff in m^3/s$ 

C = runoff coefficient (dimensionless)

i = rainfall intensity in mm/hr

 $A = catchment area in km^2$ 

In Hong Kong, a value of C = 1.0 is commonly used in developed urban areas. In less developed areas, appropriate C values in order to ensure that the design would be fully cost-effective.

#### Surface Characteristics Runoff coefficient, C\*

| Asphalt                  | 0.70 - 0.95 |
|--------------------------|-------------|
| Concrete                 | 0.80 - 0.95 |
| Brick                    | 0.70 - 0.85 |
| Grassland (heavy soil**) |             |
| Flat                     | 0.13 - 0.25 |
| Steep                    | 0.25 - 0.35 |
| Grassland (sandy soil)   |             |
| Flat                     | 0.05 - 0.15 |
| Steep                    | 0.15 - 0.20 |

The surface of the site will be covered by Asphalt, the C should be **0.85** (Mid value)

#### 6.6.1 Village Drainage and Main Rural Catchment Drainage Channels

'Village Drainage' refers to the local stormwater drainage system within a village. A stormwater drain conveying stormwater runoff from an upstream catchment but happens to pass through a village may need to be considered as either a 'Main Rural Catchment Drainage Channel' or 'Village Drainage', depending on the nature and size of the upstream catchment. In any case, the impact of a **50-year** event should be assessed in the planning and design of village drainage system to check whether a higher standard than 10 years is justified.

Table 10 - Recommended Design Return Periods based on Flood Levels

| Intensively Used Agricultural Land                                           | 2-5 years               |
|------------------------------------------------------------------------------|-------------------------|
| Village Drainage including Internal Drainage<br>System under a Polder Scheme | 10 years <sup>1,3</sup> |
| Main Rural Catchment Drainage Channels                                       | 50 years <sup>2,3</sup> |
| Urban Drainage Trunk Systems                                                 | 200 years 4             |
| Urban Drainage Branch Systems                                                | 50 years <sup>4</sup>   |

Notes:

- The impact of a 50-year event should be assessed in each village to check whether a higher standard than 10 years can be justified.
- 2. Embanked channels must be capable of passing a 200-year flood within banks.
- For definitions of Village Drainage and Main Rural Catchment Drainage Channels, refer to Section 6.6.1.
- For definitions of Urban Drainage Branch and Urban Drainage Trunk Systems, refer to Section 6.6.2.

#### 50 years is used

| Duration<br>(min) | Extreme Intensity x (mm/h) for various Return Periods<br>T(year) |      |      |      |      |      |      |
|-------------------|------------------------------------------------------------------|------|------|------|------|------|------|
|                   | 2                                                                | 5    | 10   | 20   | 50   | 100  | 200  |
| 240               | 28.5                                                             | 37.7 | 43.4 | 48.6 | 54.9 | 59.4 | 63.6 |
| 120               | 42.2                                                             | 54.7 | 62.5 | 69.6 | 78.4 | 84.7 | 90.8 |
| 60                | 61.0                                                             | 75.7 | 84.3 | 92.0 | 101  | 108  | 114  |
| 30                | 84.0                                                             | 100  | 110  | 118  | 128  | 135  | 142  |
| 15                | 106                                                              | 127  | 139  | 150  | 163  | 173  | 182  |
| 10                | 119                                                              | 141  | 155  | 168  | 184  | 196  | 208  |
| 5                 | 138                                                              | 161  | 177  | 193  | 216  | 234  | 254  |

i (rainfall intensity) = 101mm/hr (Duration of 60min is used)



172



i = 101 mm/hr (50 years)

#### **Calculation of the Flow from the Application Site**

- Qp = 0.278CiA
- C = 0.85 (mid Value) Asphalt
- i = 101 mm/hr
- $A = 6,133m^2 (0.006133km^2)$
- $Qp = 0.147 \text{m}^3/\text{s or } 8,7831/\text{min}$

# **GEO Technical Guidance Note No. 43 (TGN 43) Guidelines on Hydraulic Design of U-shaped**



Figure 1 - Chart for the rapid design of U-shaped and half-round channels up to 600 mm

For 8,7831/min, 375 U-channel is used.

### **Estimation of the Capacity of Existing Natural Stream Course**



Chezy's formula :  $V = C \sqrt{(m x i)}$ 

Where V = velocity of flow C = Chezy coefficient m = hydraulic mean depth (HMD) i = inclination or gradient as 1/X Manning's formula : C = m<sup>1/6</sup> / n Where C = Chezy coefficient n = coefficient of roughness (0.001 for PVC and Clay, 0.015 for concrete (Lined) Assume 0.050 for vegetation (Unlined) m = hydraulic mean depth (HMD)

HMD = area of flow / wetted perimeter

Area of flow =  $(2 + 1.5) \ge 2/2 = 3.5$ Wetted perimeter =  $(0.25^2 + 2^2)^{1/2} \ge 2 + 1.5 = 5.531$ HMD = 3.5 / 5.531 = 0.632

 $C = 0.632^{1/6} / 0.05 = 18.52$ 

i = 1/200 = 0.005

 $V = 18.52 \text{ x} (0.632 \text{ x} 0.005)^{1/2} = 1.041 \text{ m/s}$ 

Capacity of the Existing Stream Course  $Q = 1.041 \ge 3.5 = 3.64 \text{ m}^3/\text{s or } 218,610 \text{ l/min}$ 

**Calculation of the Flow from the Catchment Area onto the Existing Stream Course** 

Qp = 0.278CiA

$$C = 0.85$$
 (mid Value) Asphalt (Assume all on Asphalt, more conversative)

- i = 101 mm/hr
- $A = 37,000m^2 (0.037km^2)$

 $Qp = 0.883 \text{ m}^{3}/\text{s} < 3.64 \text{ m}^{3}/\text{s}$  Capacity OK









A small Bulldozer is used to clear the vegetation on the stream